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Abstract: We construct the totally antisymmetric structure constants fABCD of a 3-

algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie

algebra. The structure constants fABCD can be used to write down a maximally supercon-

formal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes,

including the “center-of-mass” mode described by free scalar and fermion fields. The gauge

field sector reduces to a three dimensional BF term, which underlies the gauge symmetry

of the theory. We comment on the issue of unitarity of the quantum theory, which is prob-

lematic, despite the fact that the specific form of the interactions prevent the ghost fields

from running in the internal lines of any Feynman diagram. Giving an expectation value to

one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian

with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at

large gYM.
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1. Introduction

Finding the three-dimensional superconformal field theory that describes the low energy

dynamics of multiple coincident M2 branes may lead to profound new insights in our un-

derstanding of M-theory. In [1] a maximally supersymmetric three dimensional conformal

field theory (henceforth called the BL theory) was proposed as a candidate description of

the low energy world volume theory of multiple coincident M2-branes, incorporating some

insights from earlier works [2 – 4]. Some elements of the theory were already present in the

important work of Gustavsson [5].

The BL theory is based on a generalization of Lie algebras dubbed 3-algebras1 (studied

independently by Gustavsson in [5]). A 3-algebra A is an N dimensional vector space

endowed with a trilinear skew-symmetric product

[A,B,C] (1.1)

which satisfies the so called fundamental identity

[A,B, [C,D,E]] = [[A,B,C],D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]] , (1.2)

which extends the familiar Jacobi identity of Lie algebras to 3-algebras. If we let

{TA}1≤A≤N be a basis of A, the 3-algebra is specified by the structure constants fABC
D

of A:

[TA, TB, TC ] = fABC
DTD . (1.3)

The fundamental identity (1.2) is expressed as:

fABG
HfCDE

G = fABC
GfGDE

H + fABD
GfCGE

H + fABE
GfCDG

H . (1.4)

1Known in the mathematical literature as 3-Lie algebras [6].
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Classifying 3-algebras A requires classifying the solutions to the fundamental identity (1.4)

for the structure constants fABC
D.

In order to derive from a Lagrangian description the equations of motion of the BL

theory — which were obtained by demanding closure of the supersymmetry algebra — a bi-

invariant non-degenerate metric hAB on the 3-algebra A is needed. Bi-invariance requires

the metric to satisfy:

fABC
EhED + fBCD

EhAE = 0 . (1.5)

This implies that the tensor fABCD ≡ fABC
EhED is totally antisymmetric. The metric

hAB arises by postulating a non-degenerate, bilinear scalar product Tr( , ) on the algebra

A:

hAB = Tr
(

TA, TB
)

. (1.6)

The Lagrangian of the BL theory is completely specified once a collection of structure

constants fABC
D and a bi-invariant metric hAB solving the constraints (1.4), (1.5) is given.

The BL theory encodes the interactions of a three dimensional N = 8 multiplet, consisting

of eight scalar fields X(I) and their fermionic superpartners Ψ, and a non-propagating gauge

field A A
µ B . Matter fields in this theory take values in A, so that X(I) = X

(I)
A TA,Ψ =

ΨATA. The BL Lagrangian is given by [1]

L = −
1

2
DµXA(I)DµX

(I)
A +

i

2
Ψ

A
ΓµDµΨA +

i

4
fABCDΨ

B
ΓIJXC(I)XD(J)ΨA

−
1

12

(

fABCDXA(I)XB(J)XC(K)
)(

f D
EFG XE(I)XF (J)XG(K)

)

+
1

2
εµνλ

(

fABCDA AB
µ ∂νA

CD
λ +

2

3
f G

AEF fBCDG A AB
µ A CD

ν A EF
λ

)

, (1.7)

where:

DµΦA(I) = ∂µΦA(I) + fA
BCDACD

µ ΦB(I) . (1.8)

The theory is invariant under the gauge transformations

δXA(I) = −fA
BCDΛBCXD(I)

δΨA = −fA
BCDΛBCΨD

δ(f CD
AB AAB

µ ) = f CD
AB DµΛAB (1.9)

and under the following supersymmetry transformations

δXA(I) = i ǫ ΓIΨA

δΨA = DµXA(I)ΓµΓIǫ +
1

6
fA

BCDXB(I)XC(J)XD(K)ΓIJKǫ

δ(f CD
AB AAB

µ ) = if CD
AB XA(I) ǫΓµΓIΨ

B, (1.10)

where Ψ and ǫ are eleven dimensional Majorana spinors satisfying the projection condition

Γ012ǫ = ǫ and Γ012Ψ
A = −ΨA respectively.

The only non-trivial example of a 3-algebra with a positive definite 3-algebra metric

hAB is the four dimensional algebra A4, defined by structure constants fABC
D = εABC

D,
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where ǫABCD is the 4-dimensional Levi Civita symbol. In [7, 8] it has been proven that the

only 3-algebras with a positive definite 3-algebra metric hAB are A4⊕. . .⊕A4⊕C1⊕. . .⊕Cl,

where Ci denote central elements in the algebra.2 New constructions are possible if one

does not require the existence of a Lagrangian but only of the equations of motion [12],

which can be written without the need of a metric hAB in the algebra.

In this paper we find a novel construction of 3-algebras Ag based of an arbitrary

semi-simple Lie algebra g, giving rise to an infinite class of novel realizations of the BL

theory. These new 3-algebras are found by relaxing the condition that the 3-algebra metric

hAB is positive definite.3 In our construction the 3-algebra metric is taken to be hAB =

diag(−1, 1, . . . , 1), and it has a single timelike direction.

In most physical theories, a positive-definite metric is required in order to ensure that

the theory has positive-definite kinetic terms and to prevent violations of unitarity due

to propagating ghost-like degrees of freedom. Nevertheless, there are examples of theories

that are unitary despite the presence of ghost fields, like Chern-Simons theory based on

non-compact Lie algebras [13, 14]. The peculiar form of the interactions make our model

resemble, in some aspects, the Nappi-Witten model [15], describing a WZW model for a

non semi-simple algebra, and analogous constructions for Chern-Simons and Yang-Mills

theories in [16] based on non semi-simple gauge groups.

The BL theory was considered recently in several papers. Full superconformal invari-

ance was proven in [17]. In [18] a specific way to connect the BL theory to the D2-brane

theory by giving a vacuum expectation value to a scalar field was proposed. Different

discussions of the vacuum moduli space appeared in [19 – 22]. The proposal seems to be

that the BL theory with algebra A4 describes two M2-branes propagating in a non trivial

orbifold of flat space. A maximally supersymmetric deformation of the theory by a mass

parameter was found in [23, 24]. In [25] it was shown that the BL theory fits in the gen-

eral construction of maximally supersymmetric gauge theories using the embedding tensor

techniques. Other interesting recent papers on BL theory have appeared in [26 – 28].

2. The model

We take the bi-invariant metric on the 3-algebra A to be

hAB = ηAB , A,B = 0, 1, . . . , n + 1, (2.1)

where N = n + 2 is the dimension of A and ηAB = diag(−1, 1, . . . , 1) is the Minkowski

metric on the 3-algebra A.

We now split the 3-algebra indices A,B, . . . into A = (0, a, φ) where a, b = 1, . . . , n and

φ ≡ n + 1. Then the following set of totally antisymmetric structure constants

f0abc = fφabc = Cabc , f0φab = fabcd = 0 , (2.2)

2As previously conjectured in e.g. [9, 10].
3Earlier studies of 3-algebras for Lorentzian metrics can be found in [11].
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solve the fundamental identity (1.4), where Cabc are the structure constants of a compact

semi-simple Lie algebra g of dimension n. The structure constants Cabc satisfy the usual

Jacobi identity.

Therefore, for any given semi-simple Lie algebra g, one can construct an associated

3-algebra, which we will denote by Ag. This means that we can write down an explicit

realization of the Bagger-Lambert theory for any semi-simple Lie algebra g. This gives rise

to a family of maximally supersymmetric Lagrangians in three dimensions.

It is convenient to introduce “light-cone variables”, that is null generators on the

algebra Ag :

T± = ±T 0 + T φ. (2.3)

In this basis the metric in Ag is given by

h+− = 2, h±± = 0, hab = δab, ha± = 0 , (2.4)

while the structure constants of Ag are given by:

f+abc = 2Cabc , f−abc = Cabc , f−abc = f+abc = 0 . (2.5)

In order to write the Lagrangian we define X±(I) = ±X0(I)+Xφ(I) and Ψ± = ±Ψ0+Ψφ.

The Lagrangian based on Ag now reads

L = −
1

2
(∂µX+(I) + 4BµaX

a(I))∂µX−(I) −
1

2
DµXa(I)DµX(I)

a

+
i

2
Ψ

a
ΓµDµΨa +

i

4
Ψ

+
Γµ∂µΨ− +

i

4
Ψ

−
Γµ(∂µΨ+ + 4BµaΨ

a)

+
i

2
CabcΨ

a
ΓIJXb(I)Xc(J)Ψ− +

i

2
CabcΨ

b
ΓIJX−(I)Xc(J)Ψa

−
1

4

(

CabcX
a(I)Xb(J)X−(K)

) (

C c
ef Xe(I)Xf(J)X−(K)

)

−
1

2

(

CabcX
a(I)Xb(J)X−(K)

) (

C c
fe Xe(I)Xf(K)X−(J)

)

+2εµνλB a
µ F a

νλ , (2.6)

where we have decomposed the gauge fields as follows

Aa
µ ≡ A−a

µ , Ba
µ ≡

1

2
CabcAµbc , (2.7)

the curvature is given by

F a
νλ = ∂νA

a
λ − ∂λAa

ν − 2Ca
bcA

b
νA

c
λ (2.8)

and:

DµXa(I) = ∂µXa(I) − 2Ba
µX−(I) + 2Ca

bcA
c
µXb(I) . (2.9)

We note that the gauge fields A+−
µ and A+b

µ do not appear in the Lagrangian, gauge

transformations and supersymmetry transformations. Therefore, they are not part of the

theory. Similarly, Aµbc appears only through the combination CabcAµbc = 2Ba
µ, so Aa

µ, Ba
µ
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will be viewed as the fundamental gauge fields in the theory. The Bagger-Lambert Chern-

Simons term reduces, in our case, to a three dimensional BF term.

It should be noted that structure constants defined by introducing an overall multiplica-

tive parameter κ2, i.e. f+abc = 2κ2Cabc, also solve the fundamental identity. Importantly,

κ2 can be rescaled away from the Lagrangian by rescaling Xa → Xa,X− → X−/κ2, X+ →

κ2X+, Ba
µ → κ2Ba

µ, Aa
µ → Aa

µ/κ2, and similarly for the fermion fields.4

The Lagrangian (2.6) is invariant under the following gauge transformations

δBc
µ = ∂µΛ̃c − 2Cc

abB
a
µΛb − 2Cc

daA
d
µΛ̃a

δAa
µ = ∂µΛa + 2Ca

bcA
c
µΛb

δXa(I) = 2Λ̃aX−(I) + 2Ca
bcΛ

bXc(I)

δX+(I) = −4Λ̃cX
c(I)

δX−(I) = 0

δΨa = 2Λ̃aΨ− + 2Ca
bcΛ

bΨc

δΨ+ = −4Λ̃cΨ
c

δΨ− = 0 (2.10)

where Λa ≡ Λ−a and Λ̃a ≡ 1
2Ca

bcΛ
bc. The supersymmetry transformations are given by

δXA(I) = i ǫ ΓIΨA , A = {−,+, a}

δΨ− = ∂µX−(I)ΓµΓIǫ

δΨ+ = (∂µX+(I) + 4BµaX
a(I))ΓµΓIǫ +

1

3
CbcdXb(I)Xc(J)Xd(K)ΓIJKǫ

δΨa = DµXa(I)ΓµΓIǫ −
1

2
Ca

bcX
b(I)Xc(J)X−(K)ΓIJKǫ

δBc
µ =

i

2
C c

ab Xa(I) ǫΓµΓIΨ
b

δAa
µ =

i

2
X−(I) ǫΓµΓIΨ

a −
i

2
Xa(I) ǫΓµΓIΨ

− . (2.11)

A remarkable feature of the Lagrangian (2.6) is that the classical equations of motion for

X+(I),Ψ+ imply that:

∂µ∂µX−(I) = 0 , Γµ∂µΨ− = 0 . (2.12)

Therefore, X−(I) and Ψ− propagate as free fields (even though they participate in interac-

tions).

The Lagrangian can also be understood as an ordinary gauge theory (with an invariant

metric) for an “extended” Lie algebra G. The Lie algebra G is generated by SAB , whose

matrix elements are given by
(

SAB
)C

D = fABC
D [5] (the fundamental identity (1.4) indeed

implies that the matrices (SAB)CD generate a Lie algebra G). The structure is as follows

(see appendix for more details). A generic element of G is determined by an antisymmetric

matrix ΩAB = −ΩBA and the action of L(ΩAB) ∈ G on A is given by:

L(ΩAB) · TC = ΩAB[TA, TB , TC ] = ΩABfABC
DTD . (2.13)

4The fact that κ2 can be rescaled away was first noticed in [30, 31].
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For our 3-algebra Ag (2.5), the explicit form of the generators of G is given by:

(Ja)BC = −
1

2
(S+a)BC , (P a)BC = 2δa

CδB
+ − δaBδ−C =

1

c2
Ca

def
deB

C , (2.14)

where we have used Ca
cdC

bcd = c2δ
ab and c2 is the quadratic Casimir in the adjoint of g.

Hence the algebra G has dimension dim G = 2n. The generators of G obey the following

commutation relations:

[P a, P b] = 0 , [Ja, Jb] = Cab
cJ

c , [P a, Jb] = Cab
cP

c . (2.15)

The algebra (2.15) is recognized as the symmetry algebra of three dimensional BF theo-

ries [13] (a review on BF theory can be found in [29]). G has the structure of a semi-direct

sum of n abelian generators with a semi-simple Lie algebra g. More precisely, it is the

semi-direct sum of the translation algebra with g. The Ba
µ and Aa

µ gauge fields are associ-

ated with the generators P a and Ja respectively. For the case g = su(2), the extended Lie

algebra G is the Lie algebra iso(3), where the generators P a are associated with transla-

tions while the generators Ja are associated with so(3) = su(2) rotations.5 The generators

in this representation are explicitly given in the appendix.

In the quantum theory, the path integral over X+(I),Ψ+ completely freezes the modes

of X−(I),Ψ− to their free field values. This is very similar to what happens for pp wave

string models, or for WZW models based on non semi-simple Lie algebras [15]. Theories

with similar features based on non semi-simple Lie algebras have been constructed for

Chern-Simons and Yang-Mills theories [16]. These theories have the remarkable property

of being one-loop exact. The key mechanism that takes place is the following. Since one of

the light-cone variables, say X+, does not appear in the interaction vertices and there is no

X−X− propagator, there is no Feynman diagram that one can draw beyond one loop. This

has been used in [15] to show that a certain plane wave model is an exact conformal field

theory and in [16] to show the remarkable fact that in these types of Yang-Mills theories

the on-shell scattering amplitudes are finite.

An important difference with the present theory is that, although there are no internal

lines in Feynman diagrams involving X±(I) and Ψ±, there are extra fields that can run

in the loop diagrams. Another difference arises in the gauge field sector. Because of the

peculiar form of the Bagger-Lambert Chern-Simons term in (1.7) — where the kinetic

term is contracted with the structure constants — the field A+a
µ does not appear in the

Lagrangian (recall that f+abc = 0). As a result, since there is no analogue of the equation

of motion for A+a
µ , there is no condition that freezes out the mode A−a

µ as in (2.12).

Nevertheless in the pure BF sector the theory is unitary.

Therefore the quantum interactions in the present theory are non-trivial and, as in

N = 4 SYM, we expect contributions from all loops to a generic observable. It seems

possible that quantum interactions can be simplified for a suitable gauge fixing, due to the

special nature of BF theories.

5One could choose g = so(2, 1) to obtain a theory (2.6) containing the Lagrangian of three dimensional

gravity [13] coupled to matter in a way that iso(2, 1) gauge invariance is maintained, even though it is not

invariant under diffeomorphisms.

– 6 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
5

3. Connecting to D2-branes

In this section we show how the theory, if interpreted as a theory of coinciding membranes,

can be connected to the low energy description of multiple D2 branes. We follow a similar

strategy as in [18], by giving an expectation value to one of the scalar fields. In the present

case we propose that

〈X−(8)〉 = v , (3.1)

and zero for all other fields. In general, the fundamental identity implies that the structure

constants fαAB
C , where α labels an arbitrary 3-algebra generator, satisfy the usual Jacobi

identity. Therefore fαAB
C are the structure constants of a conventional Lie algebra. In the

present case of our 3-algebra Ag (2.5) and taking α = +, the “reduced” algebra is g×u(1).

We now expand the Lagrangian (2.6) around the VEV (3.1) and identify gYM = v. As

in [18], we will neglect terms which are suppressed by powers of 1/gYM compared to the

leading terms. For the part involving Ba
µ, we find

LB = −2g2
YMBµaB

µa + 2gYMBµaD′
µX(8)

a + 2εµνλB a
µ F a

νλ + . . . (3.2)

where D′
µXa(I) = ∂µXa(I) − 2Ca

bcA
b
µXc(I), and the dots represent terms which give sup-

pressed contributions. We eliminate Ba
µ by its equation of motion:

Ba
µ =

1

2g2
YM

ε νλ
µ F a

νλ +
1

2gYM
D′

µXa(8) (3.3)

Inserting this back into the Lagrangian, and rescaling Aa
µ → Aa

µ/2, we get as leading term

in g2
YM the three dimensional SYM Lagrangian

L = −
1

4g2
YM

F a
µνFµν

a −
1

2
∂µX+(I)∂µX−(I) −

1

2
DµXa(i)DµX(i)

a

+
i

2
Ψ

a
ΓµDµΨa +

i

2
Ψ

+
Γµ∂µΨ− +

i

2
Ψ

−
Γµ∂µΨ+

+gYM
i

2
CabcΨ

b
Γ8jXc(j)Ψa −

g2
YM

4

(

CabcX
a(i)Xb(j)

)(

C c
ef Xe(i)Xf(j)

)

, (3.4)

where i, j = 1, . . . , 7. We also note that the supersymmetry transformations in (2.11)

reduce to those of three dimensional N = 8 SYM to leading order in gYM (with Γ8 playing

the role of Γ10).

We can dualise the scalar Xφ(8) by abelian duality to produce a U(1) gauge field, and

the U(1) supermultiplet is completed by Xφ(i), Ψφ. Taking g = su(N), the resulting theory

is the maximally supersymmetric SU(N)×U(1) Yang-Mills theory plus an additional U(1)

supermultiplet of free ghost fields,

Lghost =
1

4
F 2

µν +
1

2
∂µX0(i)∂µX0(i) −

i

2
Ψ

0
Γµ∂µΨ0 (3.5)

where we have dualised X0(8) into an abelian vector field Aµ. In this limit the ghost

Lagrangian is completely decoupled from the SU(N)×U(1) Yang-Mills theory and it does

not affect its unitarity.
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A similar theory with a decoupled U(1) ghost has been considered by Tseytlin [16].

The starting point is SU(2) × U(1) YM theory with a decoupled-ghost U(1) field. By

a contraction of SU(2) × U(1) one ends up with YM theory based on the 4-dimensional

algebra non semi-simple Lie algebra Ec
2. It would be interesting to see if similar limits can

be taken at the level of the 3-algebra studied here.

4. Concluding remarks

In general, the presence of ghost-like particles renders a theory potentially non-unitary.

There are some special cases like Chern-Simons theory based on non-compact semi-simple

algebras where one can show that the theory is nevertheless unitary [14]. Although the

present theory also has Chern-Simons gauge fields, there are some important differences, in

particular, there are extra propagating ghost-like degrees of freedom X0(I), Ψ0. Clearly, in

order to settle the unitarity issue, the theory requires a separate and more detailed study.

An interesting feature is that the X+(I), Ψ+ fields can be integrated out exactly,

freezing out the modes X−(I), Ψ− to their free theory values. This property ensures that

there are modes which may potentially describe the center-of-mass translational mode of

multiple M2 branes. In addition, the fact that interactions only involve X−(I),Ψ−, and

not X+(I),Ψ+, implies that no ghost-like X0(I),Ψ0 field ever appears in internal lines of

Feynman diagrams.

It would also be interesting to see if the present theory could represent multiple M2

branes, if not in a fundamental sense, at least as an effective description (e.g. large N ,

where the ghost contributions of O(1) are negligible compared to N).

In conclusion, a family of maximally supersymmetric conformal field theories with a

Lagrangian formulation exist, and with arbitrary Lie algebra structure. Their relevance

for M-theory remains to be seen.

Note added: after this paper appeared, two other papers with closely related results [30,

31] appeared in the arXiv.

Acknowledgments

J.G. would like to thank L. Freidel for useful discussions and the University of Barcelona for

hospitality. G. M. would like to thank M. Gaberdiel for enlightening discussions. J.R. would

like to thank P. Townsend and A. Tseytlin for useful comments and the Perimeter Institute

for hospitality during the course of this work. Research at Perimeter Institute is supported

by the Government of Canada through Industry Canada and by the Province of Ontario

through the Ministry of Research and Innovation. J.G. also acknowledges further support

by an NSERC Discovery Grant. J.R. acknowledges support by MCYT FPA 2007-66665,

European EC-RTN network MRTN-CT-2004-005104 and CIRIT GC 2005SGR-00564.

– 8 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
5

A. Induced Lie algebra structure

In the examples we constructed, the algebra G is determined by g. In particular, we will

show that G is a semidirect sum of g with n abelian generators. The set SAB of generators

of G have the following matrix representation which acts on A itself:

(

SAB
)C

D = fABC
D . (A.1)

In our case the S−A generators vanish. The remaining generators are given by

(Ja)B
C ≡ −

1

2

(

S+a
)B

C = CaB
C

(

Hab
)C

D = 2Cab
DδC

+ − CabCδ−D , (A.2)

with Cab± = Ca+− = 0. Since g is semisimple, the Ja generators are linearly independent.

One can easily check by direct calculation that the Hab generators are abelian. In principle,

there are 1
2n(n − 1) such generators (we recall that n is the dimension of g), but each

matrix Hab has non vanishing entries only in the + row and in the − column (which are

proportional). As such, at most n of them are linearly independent and, due to the fact

that g is semisimple, exactly n of them are linearly independent. We can write a basis of

the space spanned by Hab as:

(P a)C
D = 2δa

DδC
+ − δaCδ−D . (A.3)

A straightforward calculation gives:

[P a, P b] = 0 , [Ja, Jb] = Cab
cJ

c , [P a, Jb] = Cba
cP

c . (A.4)

The generic covariant derivative is given by

DµφA = ∂µφA + fCDA
BAµ CD φB . (A.5)

Recalling the definitions

Aa
µ ≡ A−a

µ , Ba
µ ≡

1

2
CabcAµbc , (A.6)

we have

DµφA = ∂µφA + 2Aa
µ (Ja)

A
BφB + 2Ba

µ (Pa)
A

BφB (A.7)

which is the standard covariant derivative, as appeared in section 2.

As an example, we explicitly write down the generators of G for the simple case in

which g = su(2), so that the dimension of Ag is N = 5:

J1 =















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0















J2 =















0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0















J3 =















0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0















(A.8)
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and

P 1 =















0 0 2 0 0

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0















P 2 =















0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0















P 3 =















0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0















(A.9)

They assemble to build the algebra of iso(3), where the P 1, P 2, P 3 generate translations

and the J1, J2, J3 generate rotations.
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[arXiv:0804.2662].

[8] J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane

actions, arXiv:0804.3078.

[9] A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083

[arXiv:0802.3456].

[10] P.-M. Ho, R.-C. Hou and Y. Matsuo, Lie 3-algebra and multiple M2-branes,

arXiv:0804.2110.

[11] J. Figueroa-O’Farrill and G. Papadopoulos, Plücker-type relations for orthogonal planes,
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